DANGER!

Inappropriate use of colour can be disasterous to the application
Why Should We Care?

• Poorly designed color is confusing
 – Creates visual clutter
 – Misdirects attention

• Poor design devalues the information
 – Visual sophistication
 – Evolution of document and web design

• “Attractive things work better”
 – Don Norman

Courtesy of Maureen Stone
Background affects Lightness Scale

Courtesy of Maureen Stone
Lightness Scales

- **Lightness**: perceived reflectance
- **Brightness**: perceived amount of light coming from a surface
- **Luminance**: a measured value weighted by human spectral sensitivity
 - Varies with wavelength
 - Luminous efficiency function

Green and blue lights of equal intensity have different luminance values.
L vs. Luminance

Corners of the RGB color cube

Luminance of these colors

L from HLS
All the same
Wrong!

Modified from Maureen Stone
Value

• Perceived lightness/darkness of a color
• Scale from black to white
 – Power scale
 – Munsell value, L*
• Single most important factor in color design
Get it right in black and white

• Value alone defines shape
 – No edge without lightness change
 – No shading without lightness variation

• Value difference defines contrast
 – Defines legibility
 – Use at least 3:1 luminance contrast for text clarity
 – Controls attention

Modified from Maureen Stone
Controls Legibility

Larry Arend, colorusage.arc.nasa.gov

Drop Shadows

Need an edge

Courtesy of Maureen Stone
Controls Attention, Clutter

Courtesy of Maureen Stone
Color Models

Physical World
- **Light Energy**
 - Spectral distribution functions $F(I)$

Visual System
- **Cone Response**
 - Reduce to three values (LMS)
 - CIE tristimulus values (XYZ)
- **Opponent Encoding**
 - Separate Lightness, Chroma
 - (A,R-G,Y-B)

Mental Models
- **Perceptual Models**
 - Unique White
 - CIELAB
 - Munsell (HVC)
- **Appearance Models**
 - Hue, chroma, saturation, colorfulness
 - Lightness, brightness
 - CIECAM02

Courtesy of Maureen Stone
Visual System

• Light path
 – Cornea, pupil, lens, retina, optic nerve, brain

• Retinal cells
 – Rods and cones
 – Unevenly distributed

• Cones
 – Three “color receptors”
 – Concentrated in fovea
Cone Response

- Encode spectra as three values
- Long, medium and short (LMS)
- *Trichromacy*

Courtesy of Maureen Stone
Effects of Retinal Encoding

- All spectra that stimulate the same cone response are indistinguishable
- *Metamerism match*

Courtesy of Maureen Stone
CIE Standard “Cones”

- CIE Color Matching Functions (CMF)
- CIE tristimulus values (XYZ)
- Foundation for color measurement

Courtesy of Maureen Stone

Opponent Color

• Definition
 – Achromatic axis
 – R-G and Y-B axis
 – Separate lightness from chroma channels

• Occurs in retina

Courtesy of Maureen Stone
Model “Color blindness”

• Flaw in opponent processing
 – Red-green common (deuteranope, protanope)
 – Blue-yellow possible (tritanope)
 – Luminance channel almost “normal”

• Effect is 2D color vision model
 – Flatten color space
 – Can be simulated (Brettel et. al.)
 – Vischeck (www.vischeck.com)

Courtesy of Maureen Stone
Vischeck
(www.vischeck.com)

- Simulates color vision deficiencies
- Web service or Photoshop plug-in
- Robert Dougherty and Alex Wade

Courtesy of Maureen Stone
Rainbow in Vischeck

Deuteranope Simulation

Protanope Simulation

Tritanope Simulation
Color Appearance

Depends on many factors

– Adjacent colors (background)
– Viewing environment (surround)
– Adaptation
– Spatial effects
Chromaticity contrast
Chromatic Adaptation

www.usd.edu/psyc301/coloradapt.htm
Effect of Spatial Frequency

- Smaller = less saturated
- The paint chip problem

Courtesy of Maureen Stone

Redrawn from Foundations of Vision, fig 6
© Brian Wandell, Stanford University
Categorical Data

• Limited distinguishability (8-14)
 – Best with Hue
 – Best choices from Ware:
Brightness & saturation draw attention
Ordered Data

- Greyscale
- Saturation
- Brightness

- Rainbow is a learned order!
Quantitative Data - to show order

- Mediocre
 - rainbow (hue)
- Good
 - Greyscale
 - Luminance
 - Brightness

[www.research.ibm.com/visualanalysis/perception.html]
Rainbow colour map

- Learned order
- Visually segmented
 - Solution - isoluminant rainbow
But colour choice also depends on task.

Understand relative height

Find high & low values

Find height 120
Additional notes about greyscale

- Hard to distinguish in small areas
- 3D shading interferes
Color Brewer

• Useful for designing colour scales

• http://colorbrewer2.org/
Perceptual Color Spaces

Unique black and white

Courtesy of Maureen Stone
Munsell Color

- Hue, Value, Chroma
 - 5 R 5/10 (bright red)
 - N 8 (light gray)

- Perceptually uniform

Munsell Renotation System maps between HVC and XYZ

Courtesy of Maureen Stone
Munsell Atlas

Courtesy Gretag-Macbeth
Interactive Munsell Tool

- From www.munsell.com

Courtesy of Maureen Stone